Fuzzy Technique-based Identification of Close and Distant Clusters in Clustering

نویسندگان

  • Kyung Mi Lee
  • Keon-Myung Lee
چکیده

Due to advances in hardware performance, user-friendly interfaces are becoming one of the major concerns in information systems. Linguistic conversation is a very natural way of human communications. Fuzzy techniques have been employed to liaison the discrepancy between the qualitative linguistic terms and quantitative computerized data. This paper deals with linguistic queries using clustering results on data sets, which are intended to retrieve the close clusters or distant clusters from the clustering results. In order to support such queries, a fuzzy technique-based method is proposed. The method introduces distance membership functions, namely, close and distant membership functions which transform the metric distance between two objects into the degree of closeness or farness, respectively. In order to measure the degree of closeness or farness between two clusters, both cluster closeness measure and cluster farness measure which incorporate distance membership function and cluster memberships are considered. For the flexibility of clustering, fuzzy clusters are assumed to be formed. This allows us to linguistically query close or distant clusters by constructing fuzzy relation based on the measures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Marketing Based on Fuzzy Clustering of Customers (Case Study: on one Mobile Company)

Objective There is a general tendency toward direct marketing these days. Therefore, instead of designing advertisement and marketing strategies for all the customers in the market, it is recommended to classify the customers based on clustering techniques and then design specific strategies accordingly. This will reduce marketing and advertisement expenses, increase sale department efficientl...

متن کامل

An Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering

The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...

متن کامل

Identification of Power Stripping Resources with Fuzzy Cluster Dynamic Approach (Case Study: West Azerbaijan Province)

Reducing electric power theft is a significant part of the potential benefits of implementing the concept of smart grid. This paper proposes a data-based approach to identify locations with unusual electricity consumption. The new distance-based method classifies the new data as violator costumers, if their distance is long to the primary consumption data. The proposed algorithm determines the ...

متن کامل

Oil Reservoirs Classification Using Fuzzy Clustering (RESEARCH NOTE)

Enhanced Oil Recovery (EOR) is a well-known method to increase oil production from oil reservoirs. Applying EOR to a new reservoir is a costly and time consuming process. Incorporating available knowledge of oil reservoirs in the EOR process eliminates these costs and saves operational time and work. This work presents a universal method to apply EOR to reservoirs based on the available data by...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Fuzzy Logic and Intelligent Systems

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011